To create a design to be 3D-printed, I needed to use some kind of 3D-Modeling software.
If you’d like to download and edit the cad files I created (available for free here) keep reading. I’ll explain how this can be done.
You are viewing: How To Make A Glove In Cad
I had dabbled a bit with software like Maya and Modo in the past, which is primarily used for creating 3D graphics and animations. To build a virtual model for this project, I’d need to learn a CAD modeling environment. This is the kind of software engineers use to design machines, electronics, and other functional devices. There’s a wide variety of software packages to pick from, including programs like AutoCad, Pro-Engineer, Rhino, or Solidworks. I ended up using Solidworks, as it was available at the computer lab at school. These programs are often pretty expensive, but if you don’t have access to any there is also free-to-use 3D Modeling/CAD software like Blender, Google Sketchup, or AutoDesk 123D.
The next step in creating the virtual model, now that I had selected the CAD software, is drawing each of the parts. I began by “digitizing” the paper prototype of the glove. Using a digital caliper, which is a handy little device for quickly and accurately measuring dimensions and angles, I input the geometry of my paper model into digital part files on the computer. CAD software allows you to use actual units of measurement to define the parameters of the model – I used inches for this model.
Read more : How To Cut Finger Off Mechanix Glove
I started by drawing the geometry of the top and bottom of the paper finger, then did a lofted extrusion between the two drawings. After modeling the basic shapes, I used a feature called “shell” to hollow them, extruded cuts to shape them, and “fillets” to round corners and smooth surfaces.
I did the exact same thing for the phone circuit, hardware, and electrical components, using the caliper to measure and recreate the objects on the computer. Having virtual models of these would make integrating them into the design much easier. I also created a couple of parts that would be cut out of sheet metal on a CNC mill.
After these extra components were modeled, I pulled measurements and geometry from them to add “housings” onto the structure of the glove.
Like I did with the first paper prototype, I decided to create only one glove finger, and alter copies of it for the rest of the fingers. Because the external components all need to fit the same way, I couldn’t simply scale or resize the model like I did with the paper pattern. Instead, I had to design a “parametric” model of the finger. Essentially this means the model has a few root dimensions that determine its size and shape, but any part that houses components or hardware stays the same. Here’s a video to demonstrate how these parametric components work:
Read more : How Log To Get Used To Holding Gloves At Face
To make sure the model would fit my hand, I added a simple reference image of my hand to the CAD model. I traced my hand onto a piece of paper, and drew next to it a one-inch line so I could properly scale the image. Then, I adjusted the root dimensions of the parametric models until each part of the glove fit…. like a glove!
A benefit of designing the fingers this way is that the glove could be easily modified to fit hands of different sizes. I tried to simply the model so that anyone can easily edit it by putting in their own dimensions for the width and length of each finger segment.
Along with the STL files of the glove I printed for myself, I’ve uploaded solidworks files to be modified and scaled, so that one parametric model fits all! Here’s a video that explains how you would go about doing this:
As a demonstration of this functionality, I made a virtual version of the glove for my girlfriend. We traced her hand, and took a picture of the tracing with a cheap point-and-shoot digital camera. Without having to re-draw a model from scratch, I was able to quickly create for her a custom-fit Glove One virtual model, the same way I adjusted the glove to fit my own hand. I’ve included a rendering of the two different models (hers and mine) side by side for comparison. So if you have some basic understanding of how to use Solidworks, you could quickly customize your own Glove One CAD model. Keep in mind that the parametric fingers aren’t perfect. Occasionally when you change the root dimensions, a feature or two will bug out and have to be adjusted. But the basic geometry is there, and I’d encourage anyone to give a go at creating their own, personalized Glove One model!
Source: https://t-tees.com
Category: HOW