HomeWHEREWhere In The Cell Do Transcription And Translation Take Place

Where In The Cell Do Transcription And Translation Take Place

Transcription Produces RNA Complementary to One Strand of DNA

All of the RNA in a cell is made by DNA transcription, a process that has certain similarities to the process of DNA replication discussed in Chapter 5. Transcription begins with the opening and unwinding of a small portion of the DNA double helix to expose the bases on each DNA strand. One of the two strands of the DNA double helix then acts as a template for the synthesis of an RNA molecule. As in DNA replication, the nucleotide sequence of the RNA chain is determined by the complementary base-pairing between incoming nucleotides and the DNA template. When a good match is made, the incoming ribonucleotide is covalently linked to the growing RNA chain in an enzymatically catalyzed reaction. The RNA chain produced by transcription—the transcript—is therefore elongated one nucleotide at a time, and it has a nucleotide sequence that is exactly complementary to the strand of DNA used as the template (Figure 6-7).

Transcription, however, differs from DNA replication in several crucial ways. Unlike a newly formed DNA strand, the RNA strand does not remain hydrogen-bonded to the DNA template strand. Instead, just behind the region where the ribonucleotides are being added, the RNA chain is displaced and the DNA helix re-forms. Thus, the RNA molecules produced by transcription are released from the DNA template as single strands. In addition, because they are copied from only a limited region of the DNA, RNA molecules are much shorter than DNA molecules. A DNA molecule in a human chromosome can be up to 250 million nucleotide-pairs long; in contrast, most RNAs are no more than a few thousand nucleotides long, and many are considerably shorter.

Refer to more articles:  Where Is Hateno Village In Tears Of The Kingdom

The enzymes that perform transcription are called RNA polymerases. Like the DNA polymerase that catalyzes DNA replication (discussed in Chapter 5), RNA polymerases catalyze the formation of the phosphodiester bonds that link the nucleotides together to form a linear chain. The RNA polymerase moves stepwise along the DNA, unwinding the DNA helix just ahead of the active site for polymerization to expose a new region of the template strand for complementary base-pairing. In this way, the growing RNA chain is extended by one nucleotide at a time in the 5′-to-3′ direction (Figure 6-8). The substrates are nucleoside triphosphates (ATP, CTP, UTP, and GTP); as for DNA replication, a hydrolysis of high-energy bonds provides the energy needed to drive the reaction forward (see Figure 5-4).

The almost immediate release of the RNA strand from the DNA as it is synthesized means that many RNA copies can be made from the same gene in a relatively short time, the synthesis of additional RNA molecules being started before the first RNA is completed (Figure 6-9). When RNA polymerase molecules follow hard on each other’s heels in this way, each moving at about 20 nucleotides per second (the speed in eucaryotes), over a thousand transcripts can be synthesized in an hour from a single gene.

Although RNA polymerase catalyzes essentially the same chemical reaction as DNA polymerase, there are some important differences between the two enzymes. First, and most obvious, RNA polymerase catalyzes the linkage of ribonucleotides, not deoxyribonucleotides. Second, unlike the DNA polymerases involved in DNA replication, RNA polymerases can start an RNA chain without a primer. This difference may exist because transcription need not be as accurate as DNA replication (see Table 5-1, p. 243). Unlike DNA, RNA does not permanently store genetic information in cells. RNA polymerases make about one mistake for every 104 nucleotides copied into RNA (compared with an error rate for direct copying by DNA polymerase of about one in 107 nucleotides), and the consequences of an error in RNA transcription are much less significant than that in DNA replication.

Refer to more articles:  Where Are Kfc Buffet Locations

Although RNA polymerases are not nearly as accurate as the DNA polymerases that replicate DNA, they nonetheless have a modest proofreading mechanism. If the incorrect ribonucleotide is added to the growing RNA chain, the polymerase can back up, and the active site of the enzyme can perform an excision reaction that mimics the reverse of the polymerization reaction, except that water instead of pyrophosphate is used (see Figure 5-4). RNA polymerase hovers around a misincorporated ribonucleotide longer than it does for a correct addition, causing excision to be favored for incorrect nucleotides. However, RNA polymerase also excises many correct bases as part of the cost for improved accuracy.

RELATED ARTICLES

Most Popular

Recent Comments