HomeWHENWhen Does Carbon Dioxide Absorb The Most Heat Energy

When Does Carbon Dioxide Absorb The Most Heat Energy

In 1827, Joseph Fourier, a French mathematician and physicist, wondered why Earth’s average temperature is approximately 15°C (59°F). He reasoned that there must be some type of balance between the incoming energy and the outgoing energy to maintain this fairly constant temperature. His calculations indicated that Earth should actually be much colder (-18°C or 0°F).

To have an average temperature of 15°C (59°F), Fourier knew that there had to be another process occurring in the atmosphere – something similar to the way a greenhouse retains heat. A greenhouse’s glass enclosure allows visible light to enter and be absorbed by the plants and soil. The plants and soil then emit the absorbed heat energy as infrared radiation. The glass of the greenhouse then absorbs that infrared radiation, emitting some of it back into the greenhouse and thus keeping the greenhouse warm even when the temperature outside is lower.

Because the two processes are similar, the name “greenhouse effect” was coined to describe Fourier’s explanation. However, part of a greenhouse’s warmth results from the physical barrier of the glass, which prevents the warmer air from flowing outward. So despite the fact that the atmospheric greenhouse effect has some processes in common with an actual greenhouse, the overall mechanisms driving the greenhouse effect are different and more complex.

Refer to more articles:  When Does Usc Play Their Bowl Game

Greenhouse Gases

You have already learned that Earth’s atmosphere is composed primarily of nitrogen and oxygen. These gases are transparent to incoming solar radiation. They are also transparent to outgoing infrared radiation, which means that they do not absorb or emit solar or infrared radiation. However, there are other gases in Earth’s atmosphere that do absorb infrared radiation. These gases are known as greenhouse gases. Below are the most important greenhouse gases that influence Earth’s climate system.

Water vapor (H2O) is the strongest greenhouse gas, and the concentration of this gas is largely controlled by the temperature of the atmosphere. As air becomes warmer, it can hold more moisture or water vapor. When the air becomes saturated (or holds as much moisture as the air can at that temperature), the excess moisture will condense into cloud droplets. And if these droplets are large enough, they will fall as precipitation.

Carbon dioxide (CO2) is also an important greenhouse gas. It has a long lifetime in Earth’s atmosphere. Carbon dioxide strongly absorbs energy with a wavelength of 15 μm (micrometers). This makes carbon dioxide a good absorber of wavelengths falling in the infrared radiation region of the spectrum.

Carbon dioxide constantly moves into and out of the atmosphere through four major processes: photosynthesis, respiration, organic decomposition or decay, and combustion or the burning of organic material. You will learn more about carbon dioxide and the carbon cycle in Module 4.

Methane (CH4) is 30 times stronger than carbon dioxide as an absorber of infrared radiation. Methane, however, is present in smaller concentrations than carbon dioxide, so its net contribution to the greenhouse effect is not as large. Methane is also relatively short-lived (lasting approximately 8 years) in the atmosphere. Methane is produced when bacteria decompose organic plant and animal matter in such places as wetlands (e.g., marshes, mudflats, flooded rice fields), sewage treatment plants, landfills, and the guts of cattle and termites. Scientists are concerned about the concentration of methane increasing in regions where the Arctic and alpine permafrost is thawing and releasing methane as it warms.

Refer to more articles:  When Can I Exercise After Tooth Extraction

Halocarbons are composed of carbon, chlorine, fluorine, and hydrogen. They include chlorofluorocarbons (CFCs), which are man-made gases commonly used in refrigerators and air conditioners. Concentrations of CFC gases in the at

RELATED ARTICLES

Most Popular

Recent Comments