HomeWHICHWhich Of The Following Best Describes The Term Sarcomere

Which Of The Following Best Describes The Term Sarcomere

Muscle Contraction

Muscle cells are highly specialized for a single task, contraction, and it is this specialization in structure and function that has made muscle the prototype for studying movement at the cellular and molecular levels. There are three distinct types of muscle cells in vertebrates: skeletal muscle, which is responsible for all voluntary movements; cardiac muscle, which pumps blood from the heart; and smooth muscle, which is responsible for involuntary movements of organs such as the stomach, intestine, uterus, and blood vessels. In both skeletal and cardiac muscle, the contractile elements of the cytoskeleton are present in highly organized arrays that give rise to characteristic patterns of cross-striations. It is the characterization of these structures in skeletal muscle that has led to our current understanding of muscle contraction, and other actin-based cell movements, at the molecular level.

Skeletal muscles are bundles of muscle fibers, which are single large cells (approximately 50 μm in diameter and up to several centimeters in length) formed by the fusion of many individual cells during development (Figure 11.18). Most of the cytoplasm consists of myofibrils, which are cylindrical bundles of two types of filaments: thick filaments of myosin (about 15 nm in diameter) and thin filaments of actin (about 7 nm in diameter). Each myofibril is organized as a chain of contractile units called sarcomeres, which are responsible for the striated appearance of skeletal and cardiac muscle.

The sarcomeres (which are approximately 2.3 μm long) consist of several distinct regions, discernible by electron microscopy, which provided critical insights into the mechanism of muscle contraction (Figure 11.19). The ends of each sarcomere are defined by the Z disc. Within each sarcomere, dark bands (called A bands because they are anisotropic when viewed with polarized light) alternate with light bands (called I bands for isotropic). These bands correspond to the presence or absence of myosin filaments. The I bands contain only thin (actin) filaments, whereas the A bands contain thick (myosin) filaments. The myosin and actin filaments overlap in peripheral regions of the A band, whereas a middle region (called the H zone) contains only myosin. The actin filaments are attached at their plus ends to the Z disc, which includes the crosslinking protein α-actinin. The myosin filaments are anchored at the M line in the middle of the sarcomere.

Refer to more articles:  Which Countries Does The Uae Have Trade Agreements With

Two additional proteins (titin and nebulin) also contribute to sarcomere structure and stability (Figure 11.20). Titin is an extremely large protein (3000 kd), and single titin molecules extend from the M line to the Z disc. These long molecules of titin are thought to act like springs that keep the myosin filaments centered in the sarcomere and maintain the resting tension that allows a muscle to snap back if overextended. Nebulin filaments are associated with actin and are thought to regulate the assembly of actin filaments by acting as rulers that determine their length.

The basis for understanding muscle contraction is the sliding filament model, first proposed in 1954 both by Andrew Huxley and Ralph Niedergerke and by Hugh Huxley and Jean Hanson (Figure 11.21). During muscle contraction, each sarcomere shortens, bringing the Z discs closer together. There is no change in the width of the A band, but both the I bands and the H zone almost completely disappear. These changes are explained by the actin and myosin filaments sliding past one another, so that the actin filaments move into the A band and H zone. Muscle contraction thus results from an interaction between the actin and myosin filaments that generates their movement relative to one another. The molecular basis for this interaction is the binding of myosin to actin filaments, allowing myosin to function as a motor that drives filament sliding.

The type of myosin present in muscle (myosin II) is a very large protein (about 500 kd) consisting of two identical heavy chains (about 200 kd each) and two pairs of light chains (about 20 kd each) (Figure 11.22). Each heavy chain consists of a globular head region and a long α-helical tail. The α-helical tails of two heavy chains twist around each other in a coiled-coil structure to form a dimer, and two light chains associate with the neck of each head region to form the complete myosin II molecule.

Refer to more articles:  Which Toe Should You Start With When Removing Toenail Polish

The thick filaments of muscle consist of several hundred myosin molecules, associated in a parallel staggered array by interactions between their tails (Figure 11.23). The globular heads of myosin bind actin, forming cross-bridges between the thick and thin filaments. It is important to note that the orientation of myosin molecules in the thick filaments reverses at the M line of the sarcomere. The polarity of actin filaments (which are attached to Z discs at their plus ends) similarly reverses at the M line, so the relative orientation of myosin and actin filaments is the same on both halves of the sarcomere. As discussed later, the motor activity of myosin moves its head groups along the actin filament in the direction of the plus end. This movement slides the actin filaments from both sides of the sarcomere toward the M line, shortening the sarcomere and resulting in muscle contraction.

In addition to binding actin, the myosin heads bind and hydrolyze ATP, which provides the energy to drive filament sliding. This translation of chemical energy to movement is mediated by changes in the shape of myosin resulting from ATP binding. The generally accepted model (the swinging-cross-bridge model) is that ATP hydrolysis drives repeated cycles of interaction between myosin heads and actin. During each cycle, conformational changes in myosin result in the movement of myosin heads along actin filaments.

Although the molecular mechanisms are still not fully understood, a plausible working model for myosin function has been derived both from in vitro studies of myosin movement along actin filaments (a system developed by James Spudich and Michael Sheetz) and from determination of the three-dimensional structure of myosin by Ivan Rayment and his colleagues (Figure 11.24). The cycle starts with myosin (in the absence of ATP) tightly bound to actin. ATP binding dissociates the myosin-actin complex and the hydrolysis of ATP then induces a conformational change in myosin. This change affects the neck region of myosin that binds the light chains (see Figure 11.22), which acts as a lever arm to displace the myosin head by about 5 nm. The products of hydrolysis (ADP and Pi) remain bound to the myosin head, which is said to be in the “cocked” position. The myosin head then rebinds at a new position on the actin filament, resulting in the release of ADP and Pi and triggering the “power stroke,” in which the myosin head returns to its initial conformation, thereby sliding the actin filament toward the M line of the sarcomere.

Refer to more articles:  Which Chakra Is Purple

The contraction of skeletal muscle is triggered by nerve impulses, which stimulate the release of Ca2+ from the sarcoplasmic reticulum—a specialized network of internal membranes, similar to the endoplasmic reticulum, that stores high concentrations of Ca2+ ions. The release of Ca2+ from the sarcoplasmic reticulum increases the concentration of Ca2+ in the cytosol from approximately 10-7 to 10-5 M. The increased Ca2+ concentration signals muscle contraction via the action of two accessory proteins bound to the actin filaments: tropomyosin and troponin (Figure 11.25). Tropomyosin is a fibrous protein that binds lengthwise along the groove of actin filaments. In striated muscle, each tropomyosin molecule is bound to troponin, which is a complex of three polypeptides: troponin C (Ca2+-binding), troponin I (inhibitory), and troponin T (tropomyosin-binding). When the concentration of Ca2+ is low, the complex of the troponins with tropomyosin blocks the interaction of actin and myosin, so the muscle does not contract. At high concentrations, Ca2+ binding to troponin C shifts the position of the complex, relieving this inhibition and allowing contraction to proceed.

RELATED ARTICLES

Most Popular

Recent Comments