HomeWHICHWhich Of The Following Is Not A Characteristic Of Phospholipids

Which Of The Following Is Not A Characteristic Of Phospholipids

Membrane Lipids Are Amphipathic Molecules, Most of which Spontaneously Form Bilayers

Lipid—that is, fatty—molecules constitute about 50% of the mass of most animal cell membranes, nearly all of the remainder being protein. There are approximately 5 × 106 lipid molecules in a 1 μm × 1 μm area of lipid bilayer, or about 109 lipid molecules in the plasma membrane of a small animal cell. All of the lipid molecules in cell membranes are amphipathic (or amphiphilic)—that is, they have a hydrophilic (“water-loving”) or polar end and a hydrophobic (“water-fearing”) or nonpolar end.

The most abundant membrane lipids are the phospholipids. These have a polar head group and two hydrophobic hydrocarbon tails. The tails are usually fatty acids, and they can differ in length (they normally contain between 14 and 24 carbon atoms). One tail usually has one or more cis-double bonds (i.e., it is unsaturated), while the other tail does not (i.e., it is saturated). As shown in Figure 10-2, each double bond creates a small kink in the tail. Differences in the length and saturation of the fatty acid tails are important because they influence the ability of phospholipid molecules to pack against one another, thereby affecting the fluidity of the membrane (discussed below).

Refer to more articles:  Which Saiki K Character Are You

It is the shape and amphipathic nature of the lipid molecules that cause them to form bilayers spontaneously in aqueous environments. As discussed in Chapter 2, hydrophilic molecules dissolve readily in water because they contain charged groups or uncharged polar groups that can form either favorable electrostatic interactions or hydrogen bonds with water molecules. Hydrophobic molecules, by contrast, are insoluble in water because all, or almost all, of their atoms are uncharged and nonpolar and therefore cannot form energetically favorable interactions with water molecules. If dispersed in water, they force the adjacent water molecules to reorganize into icelike cages that surround the hydrophobic molecule (Figure 10-3). Because these cage structures are more ordered than the surrounding water, their formation increases the free energy. This free energy cost is minimized, however, if the hydrophobic molecules (or the hydrophobic portions of amphipathic molecules) cluster together so that the smallest number of water molecules is affected.

For the above reason, lipid molecules spontaneously aggregate to bury their hydrophobic tails in the interior and expose their hydrophilic heads to water. Depending on their shape, they can do this in either of two ways: they can form spherical micelles, with the tails inward, or they can form bimolecular sheets, or bilayers, with the hydrophobic tails sandwiched between the hydrophilic head groups (Figure 10-4).

Being cylindrical, phospholipid molecules spontaneously form bilayers in aqueous environments. In this energetically most-favorable arrangement, the hydrophilic heads face the water at each surface of the bilayer, and the hydrophobic tails are shielded from the water in the interior. The same forces that drive phospholipids to form bilayers also provide a self-healing property. A small tear in the bilayer creates a free edge with water; because this is energetically unfavorable, the lipids spontaneously rearrange to eliminate the free edge. (In eucaryotic plasma membranes, larger tears are repaired by the fusion of intracellular vesicles.) The prohibition against free edges has a profound consequence: the only way for a bilayer to avoid having edges is by closing in on itself and forming a sealed compartment (Figure 10-5). This remarkable behavior, fundamental to the creation of a living cell, follows directly from the shape and amphipathic nature of the phospholipid molecule.

Refer to more articles:  Which Is Faster Charger Or Challenger

A lipid bilayer has other characteristics beside its self-sealing properties that make it an ideal structure for cell membranes. One of the most important of these is its fluidity, which is crucial to many membrane functions.

RELATED ARTICLES

Most Popular

Recent Comments