Pathophysiology
Ohm’s Law states that current is directly proportional to voltage and inversely proportional to resistance. All three contribute to the pathophysiology of how electricity creates burns to the body. Contributing factors to the severity and pattern of injury include body position compared to the direction of current entering the body and duration of exposure to current.
Type of Current
You are viewing: Which Of The Following Is True About Electrical Burns
Read more : Which Of The Following Is True Of Bloodborne Pathogens
Low-frequency alternating current (AC) causes more extensive injury to tissues than does high-frequency AC or direct current (DC). This is because low-frequency AC causes ongoing local muscle contraction (flexor muscles greater than extensor muscles) at the site of contact with the electrical source, often rendering the victim unable to let go of the offending object. In addition, AC injuries are much more common, as AC powers households and other buildings.
DC causes a single strong muscle contraction, often throwing its victim away from the energy source. The most common examples of DC injuries include lightning strike and contact with a car battery. Of note, the risk of death and/or severity of injury from lightning strike depends on many factors, such as if the exposure was a direct lightning strike or the lightning hit something else nearby (tree/structure/ground) and then traveled to the individual’s body.
Voltage and Amperage
Read more : Which Statement Best Describes Reconstruction
Burns can be classified as high or low voltage. High voltages greater than 500-1000 Volts cause deep burns and extensive deep tissue and organ damage. Low voltage exposures tend to result in lesser injury. United States households are supplied with voltages in the 110 to 220 range which causes muscle tetany and can lead to prolonged exposure to the electrical source, as the patient cannot let go. From an external source, it takes only 60 to 100 milliamps of low-frequency AC or 300 to 500 milliamps of DC to induce ventricular fibrillation. For an internal source (pacemaker), it takes less than 1 milliamp to induce ventricular fibrillation.
Resistance
Electricity, the path of least resistance; thus, most injuries occur to tissues with the least amount of resistance. Skin is the tissue with the most amount of resistance in the human body, followed by bone. Nerves, muscle, and blood have the least amount of resistance. Further reinforcing this concept is that moist tissues (muscle) have much lower resistance than dry tissues (skin). Higher skin resistance results in more diffuse burns to the skin. Lower skin resistance results in deeper burns that are more likely to involve internal organs. Whether skin is relatively dry or moist, electricity passes through the highly-resistant skin tissue and then spreads out through the underlying tissues with less resistance. Therefore, skin burns can appear mild when internal tissues and organs are severely damaged.
Source: https://t-tees.com
Category: WHICH