HomeWHICHWhich Of The Following Represents A Keto-enol Tautomeric Pair

Which Of The Following Represents A Keto-enol Tautomeric Pair

Keto-enol Tautomerization

Because of the acidity of α-hydrogens, many carbonyl containing compounds undergo a proton-transfer equilibrium called tautomerism. Tautomers are readily interconverted constitutional isomers, usually distinguished by a different location for an atom or a group. Because tautomers involve the rearrangement of atoms, they are distinctly different than resonance forms, which only differ in the position of bonds and lone pair electrons. This discussion focuses on carbonyl groups with α-hydrogens, which undergo keto-enol tautomerism. Keto implies that the tautomer contains a carbonyl bond while enol implies the presence of a double bond and a hydroxyl group.

The keto-enol tautomerization equilibrium is dependent on stabilization factors of both the keto tautomer and the enol tautomer. For simple carbonyl compounds under normal conditions, the equilibrium usually strongly favors the keto tautomer (acetone, for example, is >99.999% keto tautomer). The keto tautomer is preferred because it is usually more stable than the enol tautomer by about 45-60 kJ/mol, which is mainly due to the C=O double bond (-749 kJ/mol) being stronger than the C=C double bond (-611 kJ/mol). Because ketones have two alky groups donating electron density into the carbonyl carbon, they tend to be more stable and therefore less apt to form the enol tautomer than aldehydes. For example, propanal is 1000 times more likely to be in its enol tautomer than acetone. With carboxylic acid derivatives, the leaving group tends to stabilize the carbonyl through electron donation which makes the formation of the enol tautomer much less likely. In general, ketones are over 100,000,000 times more likely to be in an enol tautomer form than esters.

Refer to more articles:  Which Means To Study Or Examine Reproduce Analyze Quantify Validate

Example Acetone Enol.svg

Example Popanal Enol.svg

Example Ethyl Ethanoate Enol.svg

Aldehydes and symmetrical ketones typically only have one possible enol tautomer while asymmetrical ketones can have two or more. The preferred enol tautomer formed can be often be predicted by considering effects which can stabilize alkenes, such as conjugation and alkyl group substitution. The asymmetrical ketone, 2-methylcyclohexanone has two possible enol tautomers. Of the two tautomers, 2-methyl-1-cyclohexen-1-ol, is the more stable and therefore preferred due to the presence of an additional alkyl substituent. Likewise, 1-phenyl-1-propen-2-ol is the more stable enol tautomer of 1-phenyl-2-propanone due to conjugation with the phenyl ring.

Example Asymmetrical Enol A.svg

Example Asymmetrical Enol B.svg

RELATED ARTICLES

Most Popular

Recent Comments