All animals and most microorganisms rely on the continual uptake of large amounts of organic compounds from their environment. These compounds are used to provide both the carbon skeletons for biosynthesis and the metabolic energy that drives cellular processes. It is believed that the first organisms on the primitive Earth had access to an abundance of the organic compounds produced by geochemical processes, but that most of these original compounds were used up billions of years ago. Since that time, the vast majority of the organic materials required by living cells have been produced by photosynthetic organisms, including many types of photosynthetic bacteria.
- Which Of The Following Statements Regarding Gonorrhea Is Correct
- Which Symbols Represent Atoms That Are Isotopes Of Each Other
- Which Of The Following Are Roman Architectural Innovations
- Which Of The Following Is An Involuntary Environmental Risk
- Which Of The Following Is An Example Of Downward Communication
The most advanced photosynthetic bacteria are the cyanobacteria, which have minimal nutrient requirements. They use electrons from water and the energy of sunlight when they convert atmospheric CO2 into organic compounds—a process called carbon fixation. In the course of splitting water [in the overall reaction nH2O + nCO2 (CH2O)n + nO2], they also liberate into the atmosphere the oxygen required for oxidative phosphorylation. As we see in this section, it is thought that the evolution of cyanobacteria from more primitive photosynthetic bacteria eventually made possible the development of abundant aerobic life forms.
You are viewing: Which Organelle In The Plant Cell Makes Glucose From Sunlight
Read more : Which Description Best Represents The Gradual Model Of Speciation
In plants and algae, which developed much later, photosynthesis occurs in a specialized intracellular organelle—the chloroplast. Chloroplasts perform photosynthesis during the daylight hours. The immediate products of photosynthesis, NADPH and ATP, are used by the photosynthetic cells to produce many organic molecules. In plants, the products include a low-molecular-weight sugar (usually sucrose) that is exported to meet the metabolic needs of the many nonphotosynthetic cells of the organism.
Biochemical and genetic evidence strongly suggest that chloroplasts are descendants of oxygen-producing photosynthetic bacteria that were endocytosed and lived in symbiosis with primitive eucaryotic cells. Mitochondria are also generally believed to be descended from an endocytosed bacterium. The many differences between chloroplasts and mitochondria are thought to reflect their different bacterial ancestors, as well as their subsequent evolutionary divergence. Nevertheless, the fundamental mechanisms involved in light-driven ATP synthesis in chloroplasts are very similar to those that we have already discussed for respiration-driven ATP synthesis in mitochondria.
Source: https://t-tees.com
Category: WHICH