HomeWHICHWhich Transformation Will Always Map A Parallelogram Onto Itself

Which Transformation Will Always Map A Parallelogram Onto Itself

Carrying a Parallelogram Onto Itself

CCSS-M G-CO 5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

We define a parallelogram as a trapezoid with both pairs of opposite sides parallel. Students constructed a parallelogram based on this definition, and then two teams explored the angles, two teams explored the sides, and two teams explored the diagonals. I monitored while they worked.

Screen Shot 2014-10-28 at 9.19.49 AM Screen Shot 2014-10-28 at 9.12.41 AM

We discussed their results and measurements for the angles and sides, and then proved the results and measurements (mostly through congruent triangles).

I asked what they predicted about the diagonals of the parallelogram before we heard from those teams.

Screen Shot 2014-10-28 at 9.51.29 AM

We saw an interesting diagram from SJ. She explained that she had reflected the parallelogram about the segment that joined midpoints of one pair of opposite sides, which didn’t carry the parallelogram onto itself.

Screen Shot 2014-10-28 at 9.35.34 AM

So how many ways can you carry a parallelogram onto itself?

Or can you?

What if you reflect the parallelogram about one of its diagonals?

11-01-2014 Image01811-01-2014 Image019

It doesn’t always work for a parallelogram, as seen from the images above. But we can also tell that it sometimes works. For what type of special parallelogram does reflecting about a diagonal always carry the figure onto itself?

Refer to more articles:  Which Songwriting Team Wrote Will You Love Me Tomorrow

11-01-2014 Image020

It’s obvious to most of my students that we can rotate a rectangle 180˚ about the point of intersection of its diagonals to map the rectangle onto itself.

Screen Shot 2014-10-26 at 8.25.58 AMScreen Shot 2014-10-26 at 8.28.14 AM

It’s not as obvious whether that will work for a parallelogram. We need help seeing whether it will work.

10-26-2014 Image004

One of the Standards for Mathematical Practice is to look for and make use of structure.

Drawing an auxiliary line helps us to see.

10-26-2014 Image006

The diagonals of a parallelogram bisect each other. Since X is the midpoint of segment AB, rotating ADBC about X will map A to B and B to A.

10-26-2014 Image008

Since X is the midpoint of segment CD, rotating ADBC about X will map C to D and D to C.

We can verify with technology what we think we’ve made sense of mathematically using the properties of a rotation.

The change in color after performing the rotation verifies my result.

10-26-2014 Image009

The dynamic ability of the technology helps us verify our result for more than one parallelogram.

10-26-2014 Image010

Is rotating the parallelogram 180˚ about the midpoint of its diagonals the only way to carry the parallelogram onto itself?

Screen Shot 2014-10-28 at 9.59.07 AM

Before I could remind my students to give everyone a little time to think, the team in the back waved their hands madly. 729,000,000˚ works!

Did you try 729 million degrees? Why does it work?

And yes, of course, they tried it. Because they can.

And they even understand that it works because 729 million is a multiple of 180. (I’ll even assume that SD generated 729 million as a multiple of 180 instead of just randomly trying it.)

Refer to more articles:  Which Is Better Pizza Hut Or Papa Johns

We did eventually get back to the properties of the diagonals that are always true for a parallelogram, as we could see there were a few misconceptions from the QP with the student conjectures: the diagonals aren’t always congruent, and the diagonals don’t always bisect opposite angles.

@jgough tells a story about delivering PD on using technology to deepen student understanding of mathematics to a room full of educators years ago. A college professor in the room was unconvinced that any student should need technology to help her understand mathematics.

Jill looked at the professor and said, “Sir, I need you to remove your glasses for the rest of our session.”

He looked up, “Excuse me?”

Jill answered, “I need you to remove your glasses.”

He replied, “I can’t see without my glasses.”

Jill said, “You have a piece of technology (glasses) that others in the room don’t have. You need to remove your glasses.”

The college professor answered, “But others in the room don’t need glasses to see. I do.”

Jill’s point had been made. As the teacher of mathematics, I might not need dynamic action technology to see the mathematics unfold. But we all have students sitting in our classrooms who need help seeing.

What opportunities are you giving your students to enhance their mathematical vision and deepen their understanding of mathematics?

RELATED ARTICLES

Most Popular

Recent Comments