Which Common Mineral Is Composed Entirely Of Silicon And Oxygen

The mineral quartz (SiO2) is found in all rock types and in all parts of the world. It occurs as sand grains in sedimentary rocks, as crystals in both igneous and metamorphic rocks, and in veins that cut through all rock types, sometimes bearing gold or other precious metals. It is so common on Earth’s surface that until the late 1700s it was referred to simply as “rock crystal.” Today, quartz is what most people picture when they think of the word “crystal.”

Quartz falls into a group of minerals called the silicates, all of which contain the elements silicon and oxygen in some proportion. Silicates are by far the most common minerals in Earth’s crust and mantle, making up 95% of the crust and 97% of the mantle by most estimates. Silicates have a wide variety of physical properties, despite the fact that they often have very similar chemical formulas. At first glance, for example, the formulas for quartz (SiO2) and olivine ((Fe,Mg)2SiO4) appear fairly similar; these seemingly minor differences, however, reflect very different underlying crystal structures and, therefore, very different physical properties. Among other differences, quartz melts at about 600° C while olivine remains solid to temperatures of nearly twice that; quartz is generally clear and colorless, whereas olivine received its name from its olive green color.

Refer to more articles:  Which Of The Following Are True About Audience Analysis

The variety and abundance of the silicate minerals is a result of the nature of the silicon atom, and even more specifically, the versatility and stability of silicon when it bonds with oxygen. In fact, pure silicon was not isolated until 1822, when the Swedish chemist Jöns Jakob Berzelius (see the Biography link in our Resources section) finally succeeded in separating silicon from its most common compound, the silicate anion (SiO4)4-. This anion takes the shape of a tetrahedron, with an Si4+ ion at the center and four O2- ions at the corners (see Figure 1); thus, the molecular anion has a net charge of -4.

The Si-O bonds within this tetrahedral structure are partially ionic and partially covalent, and they are very strong. Silica tetrahedra bond with each other and with a variety of cations in many different ways to form the silicate minerals. Despite the fact that there are many hundreds of silicate minerals, only about 25 are truly common. Therefore, by understanding how these silica tetrahedra form minerals, you will be able to name and identify 95% of the rocks you encounter on Earth’s surface.

Early mineralogists grouped minerals according to physical properties, which spread the silicates across many groups because they have very different properties. By the early 1800s, however, Berzelius had begun classifying minerals based on their chemical composition rather than on their physical properties, defining groups such as the oxides and sulfides – and, of course, the silicates. At the time, Berzelius was able to determine the absolute proportions of elements within a mineral, but he could not see the internal arrangement of the atoms of those elements in their crystalline structure.

Refer to more articles:  Which Of The Fractions Below Shows 75

A detailed view of the internal arrangement of atoms within minerals would have to wait over 100 years for the development of X-ray diffraction (XRD) by Max von Laue, and its application to determine atomic distances by the father-son team of William Henry Bragg and William Lawrence Bragg a few years later (see their biographies in our Resources section). In the process of XRD, X-rays are aimed at a crystal. Electrons in the atoms within the crystal interact with the X-rays and cause them to undergo diffraction. In the same way that light can be diffracted by a grate or card (see our Light I: Particle or Wave? module for more information on this topic), X-rays are diffracted by the crystal and a 2-dimensional pattern of constructive and destructive interference bands results. This pattern can be used to determine the distance between atoms within the crystal structure according to Bragg’s Law. The Braggs’ work opened up a new world of mineralogy, and they were awarded a Nobel Prize in 1915 for their work determining the crystal structures of NaCl, ZnS, and diamond. XRD revealed that even minerals with similar chemical formulas could have very different crystal structures, strongly influencing those minerals’ chemical and physical properties.

As scientists created XRD images of the atomic structure of minerals, they were better able to understand the nature of the bonds between atoms in the silicate and other crystals. Within a silica tetrahedron, any single Si-O bond requires half of the available bonding electrons of the O2- ion, meaning that each O2- may bond with a second ion, including another Si4+ ion. The result of this is that the silica tetrahedra can polymerize, or form chain-like compounds, by sharing an oxygen atom with a neighboring silica tetrahedron. The silicates are, in fact, subdivided based on the shape and bonding pattern of these polymers, because the shape influences the external crystal form, the hardness and cleavage of the mineral, the melting temperature, and the resistance to weathering. These different atomic structures produce recognizable and consistent physical properties, so it is useful to understand the structures at an atomic level in order to identify and classify the silicate minerals. Identifying minerals in a rock may seem like an arcane exercise, but it is only by identifying minerals that we begin to understand the history of a given rock.

Refer to more articles:  Which Kardashian Are You Quiz

The most common silicate minerals fall into four types of structures, described in more detail below: isolated tetrahedra, chains of silica tetrahedra, sheets of tetrahedra, and a framework of interconnected tetrahedra.

Related Posts

Which Best Describes The Alternation Of Generations

Alternation of Generations Definition “Alternation of generations is a type of life cycle in which subsequent generations of plants alternate between diploid and haploid organisms.”You may be…

Which Hp Character Are You

Which Hp Character Are You

Answer these 10 questions to find out once and for all, are you Harry, Ron, Hermione? Or are you actually Draco Malfoy?You may be interested Which Is…

Which Rna Carries Amino Acids To The Ribosome

An mRNA Sequence Is Decoded in Sets of Three Nucleotides Once an mRNA has been produced, by transcription and processing the information present in its nucleotide sequence…

Which Is Better Moulin Rouge Or Crazy Horse

Which Is Better Moulin Rouge Or Crazy Horse

Burlesque Paris Cabarets are one of the most iconic things to do in Paris and one of the most popular entertainments of Paris at night. Because, YES!…

Which Is Better Butt Or Shank Ham

Which Is Better Butt Or Shank Ham

Whether you’re planning an Easter feast, Christmas dinner or a big Sunday meal, few main courses make an occasion feel as special as ham does. But preparing…

Which Tool Is Used To Manage The Evolution Of Capabilities

There’s innovation in Linux. There are some really good technical features that I’m proud of. There are capabilities in Linux that aren’t in other operating systems.You may…